

FT-40840A

BC Assay: Protein Assay Kit

Product Description

High quality reagents for the determination of protein concentration by the bicinchoninic acid method.

Product Number	Product Name and Description
UP40840A	BC Assay Protein Quantitation Kit, sufficient reagents for 500 tests/tube or 5 000 microplate assays Contains: UP95424A, reagent A, 1000mL UP95425A, reagent B, 25mL UP36859A, Albumin Standard, 2mg/mL, 10x1mL
UP40840B	BC Assay Protein Quantitation Kit, sufficient reagents for 125 tests/tube or 1 250 microplate assays Contains: UP95424B, reagent A, 250mL (Z) UP95425B, reagent B, 6mL (Z) UP36859A, Albumin Standard, 2mg/mL, 3x1mL (L)

Storage: On receipt store at room temperature (18 months) ^(Z) (keep BSA at + 4°C for long term storage) For laboratory use only, not for drug, household or medical use

Scientific and Technical Information

Proteins have traditionally been quantified by the spectrometric measurement of a color produced by a reaction between proteins and a reagent. The 1980's saw the introduction by Paul Smith(a) of a colorimetric protein assay derived on the Biuret reaction using the bicinchoninic acid, known as the BCA method.

Our improved formulation, the BC Assay, provides significant benefits over existing colorimetric assays, namely sensitivity, reagent stability, and detergent compatibility.

Principle:

The BC Assay is a colorimetric assay. it involves the reduction of Cu2+ to Cu+ by proteins in an alkaline medium. The BC Assay (bicinchoninic acid) chelates Cu+ ions with very high specificity to form a water-soluble purple colored complex.

Peptide bonds + Cu2+ ----([tetradente- Cu+ complex]

OH- Cu+ + 2 BC Assay ([purple-colored Cu+-BC Assay-Complex]

The reaction should be read at a defined time and temperature condition as the purple colored copper BC assay complex will continually develop. However, the procedural development is slow enough to allow the processing of numerous samples.

The reaction is measured by the high optical absorbance of the final Cu+ complex at 562nm. Absorbance is directly proportional to the protein concentration, with a broad linear range between $20 - 2000 \mu g/mL$ and $5 - 250 \mu g/mL$ (enhanced protocol). Protein concentration is calculated with a reference curve obtained for a standard protein.

Features of Uptima BC Assay: high quality, optimized, formulated reagents

High Performance: High sensitivity and wide linear dynamic range:

20µg/mL to 2 mg/ml, and 5µg/mL to 250µg/mL using the enhanced protocol

Less protein-protein variation than Coomassie

Convenient: Very quick protocol: mix the 2 reagents, it is ready to add to samples!

Stable at room temperature, 18month validity - Different pack sizes available (enquire/custom packages) Compatible with many substances (detergents... see list below – and any when combined Kit #R5594A)

Applications: Determination of protein concentration in complex mixtures,

particularly suited to complex mixtures containing nucleic acids, lipids or detergents

Adaptable to immobilized proteins (coated plates, affinity gels...)

Adaptable to quantitate Cu+

Assay Procedures

Labware must be carefully cleaned and rinsed with distilled water to avoid traces of interfering substances such as proteins and metals.

Preparation of standards:

Uptima recommends to use the albumin standard (#UP36859A, BSA at 2mg/mL) for most applications. Other refrence protein may be used. The purified proteins that are assayed should be utilized as the standard if greater accuracy is required.

Prepare a fresh set of protein standards at 2mg/mL to 20µg/mL, diluted from the stock solution in the same buffer, or alternatively in water (in this instance, the sample buffer(s) should be checked by analysis versus water).

Standard protocol (20µg/mL-2mg/mL)

Standard	BSA	Water or	Final protein
	standard	Buffer	Concentration
Stock Solution	BSA 2 mg/ml #UP36859A		
Standard A	300µL of stock	OµL	2mg/mL
Standard B	300µL of stock	300µL	1mg/mL
Standard C	420µL of stock	700µL	750µg/mL
Standard D	100µL of stock	300µL	500µg/mL
Standard E	100µL of stock	700µL	250µg/mL
Standard F	200µL of (E)	300µL	100µg/mL
Standard G	100µL of (E)	400µL	20µg/mL
Blank H	0	700µL	0

Enhanced protocol (5µg/mL-250µg/mL)

Standard	BSA	Water or	Final protein
	standard	Buffer	Concentration
Stock Solution	BSA 2 mg/ml #UP36859A		
Standard A'	100µL of stock	300µL	500µg/mL
Standard B'	100µL of stock	700µL	250µg/mL
Standard C'	300µL of (B')	300µL	125µg/mL
Standard D'	100µL of (B')	400µL	50µg/mL
Standard E'	48µL of (B')	752µL	15µg/mL
Standard F'	16µL of (B')	784µL	5µg/mL
Standard G'	6µL of (B')	746µL	2µg/mL
Blank H'	0	800µL	0

Preparation of samples:

Dilute samples if necessary with their respective buffer or water.

The protein concentration must fall in the range of standard curve. Therefore, it may be useful to prepare several dilutions. Sample buffers should be assayed alone to control potential interference.

Label the tubes and record dilution factor. For example:

Sample (name)	Volume	Buffer	Dilution	OD at 562 nm	Assayed Protein	Protein Concentration
	sample	(or water)			Concentration (1)	in Sample (2)
#1: sample1	200	0	1	0.824	0.8mg/mL	0.8mg/mL
#2: sample2	20µL	180μL	1/10	0.49	0.405mg/mL	4.05mg/mL
#3: sample2 dialyzed	40µL	160μL	1/5		300µL of stock	300µL of stock
#4: sample3						

Preparation of the BC Assay reagent (A+B mix at 50:1):

Prepare the BC Assay Working Reagent (WR) by adding 1 part of reagent B to 50 parts of reagent A.

Use the table below to determine the required volume of WR. Following is a table for the preparation of the volume of reagent needed with the recommended 8 points standard curve:

Tube assay (Uniplicates)*

Nu	mber of		
standards	& samples	Reagent A	Reagent B
8 points	1 to 2	20mL	400μL
	10 to 12	40mL	800µL
	20 to 22	60mL	1.2mL

Microplate assay (Duplicates)*

Nui	mber of		
standards	& samples	Reagent A	Reagent B
8 points	8 to 16	10mL	200µL
	32 to 40	20mL	400µL
	60 to 64	30mL	600µL

^{*} A duplicate analysis(**) is recommended for accurate determination, and even triplicates

Use the mixed BC Assay reagent in the next few hours. Although the Working Reagent can be stored appropriately for a few days, Uptima recommends it is disposed of to avoid potential contamination or degradation, which may affect analysis.

Test Tube Assay Protocols:

	Standard protocol Working range 20µg/mL to 1-2mg/mL	No heating protocol Working range 20µg/mL to 1-2mg/mL	Enhanced Protocol Working range 5-250µg/mL
	Allow the reagent to reach room temper	rature	
а	Pipet 0.1 ml of each standard, control, a	nd sample into test tubes. Duplicates are rec	commended.
b	Add 2 ml of BC Assay Working Reagent (mix A+B at 50:1) per test tube, and mix		
С	Incubate		
	at +37°C for 30 min	2 hours at Room Temperature	30 min at +60°C
d	Cool all test tubes to room temperature Assay reagent).	and measure the optical absorbance (OD) a	t 562 nm against the blank (water, or buffer + BC
е	Plot the standard curve, and interpolate	the protein concentration in sample from OE)s.

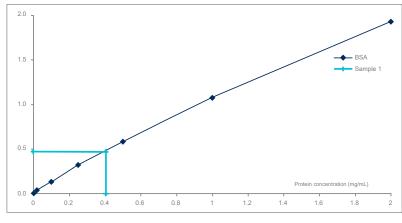
Microplate Assay Protocols:

	Standard protocol Working range 20µg/mL to 1-2mg/mL	No heating protocol Working range 20µg/mL to 1-2mg/mL	Enhanced Protocol Working range 5-250µg/mL	
	Allow the reagent to reach room temper	ature		
а	Pipette 25 µl of each standard, control, a	and sample into microplates wells. Duplicates	s or triplicates are recommended	
b	Add 200 µl of BC Assay working reagent (mix A+B at 50:1) per test well, mix (be careful with cross-contamination)			
С	Incubate			
	at +37°C for 30 min	2 hours at Room Temperature	30 min at +60°C	
d	Right after, cool all the microplate to room temperature and read the optical absorbance (OD) at 562 nm against the blank (water, or buffer + BC Assay reagent). Alternatively, wavelengths from 540 to 590 nm have been used.			
е	Plot the standard curve and interpolate the protein concentration in sample from ODs (see below figure 1).			

Additionnal information

Choosing the right Protocol:

The suggested protocols are convenient and appropriate for the majority of applications.


Modified protocols may be adopted to suit specific custom requirements. However, clients are recommended to take caution when adopting such procedures as this may affect other performances. i.e.,

- -Increasing the volume ratio of sample to reagent (i.e.50µL sample instead of 25µL in microplate procedure) increases sensitivity in terms of protein concentration but may decrease the working range and increase interferences. Lowering the ratio may be helpful to reduce interferences (but sensitivity is decreased).
- -Reading the absorbance can be done between 540 and 590nm, for example with microplate readers lacking a 562nm filter. Absorbances, hence the sensitivity, is however reduced.
- -Raising temperature may increase the absorbances values, both signal and background. [1min microwave protocol available (NT)].
- -Increasing the time of incubation has a similar effect. This may be useful when reading absorbance at non-optimal wave length.

Protein Standard:

Uptima protein assay kits (#UP40840) includes the Bovine Serum Albumin #UP36859. BSA is acommon standard that works for most applications (see below the standard curve). Other purified proteins or even any known sample (e.g. the extract) may provide suitable reference.

Fig. 1: The diagram highlights a typical standard curve with bovine albumin standard # UP36859

comp

Protein-to-Protein variations:

Uptima BC Assay shows far lower **Protein-to-Protein variations** of signal than Coomassie, and lower than Lowry and most other colorimetric or fluorescent methods. However, several parameters can modify, to greater or lesser extents, Protein signal: i.e. Amino-Acid sequences rich in cysteine, cystine, tryptophan, and tyrosine may increase the color development of the BC Assay reaction. Color response may be affected by the primary structure (sequence order), secondary and tertiary structures of the protein, isoelectric point (pl), side chains, and prosthetic groups...

BC Assay can quantitate immobilized proteins(e). e.g. gel-coupled proteins, or cells adhering to plates.

Compatible and Interfering substances:

One of the principal benefits of the BC Assay is it's compatibility with a lot of substances, notably detergents^(b) and lipids which can interfere with other colorimetric assays such as Coomassie. The following table highlights some substances and their compatibility.

Compatible (*) Substances

- 7 F%

< 6M

Detergents - Good compatibility*

1.070	ULIALO
< 5%	Deoxycholic acid
< 5%	SDS
< 3%	Triton X-100
< 6%	Tween 20

Urea

Solvents - Good compatibility*

DMS0
OMF
Methanol
Methanol

Incompatible Substances

Creatinine, Cysteine, Tyrosine, Tryptophan

Ascorbic acid, EGTA, Iron & Copper salts

H₂O₂, hydrazides Phenol Red

Compatible (*) Substances

Others - Rather good compatibility*

pure Carbonate / Bicarbonate 100mM
< 3mM Glycine HCl pH2.8
< 10mM Glucose
< 10% Glycerol
< 2M Guanidine HCl

< 50mM | Imidazole pH7.0 < 150mM | MOPS pH7.2 < 1% | NaN₃

pure PBS (0.1M phosphate, 150mM NaCl, pH 7.2)

< 1mM PMSF

pure TBS (20mM Tris, 150mM NaCl, pH 7.6)

< 0.01% Thimerosal < 50mM TRIS

Other substances

Reducing and thiols containing agents

< 0.125mM DTT < 1mM FDTA

Labware may bear traces of metals that affect the BC Assay reaction. Use cleaned or disposable vials.

To limit the interference of some substances (b, c, d):

- -the samples can be diluted provided the protein concentration remains sufficient
- -the presence of copper chelators can be overcome by increasing the A:B:C ratio of BC Assay reagent up to 20:30:1 (v/v).
- -the interfering substance can be removed (f), for example by prior desalting (dialysis...), precipitation (TCA...), purification...

Uptima provides a convenient Protein Precipitation product #R5594A - 15min room temperature operated!

In any case, all standards, blanks and controls must be treated in the same way to preserve the accuracy of the assay.

Literature:

- (a) Smith P et al, Measurement of protein using bicinchiconic acid, Anal. Biochem. 150, 76-85 (1995)
- (b) **Kaushal** et al, Effect of Zwitterionic buffers on measurement of small masses of protein with bicinchiconic acid, Anal.Biochem, 157, 291-294 (1986)
- (c) Hill et al, Protein determination using bicinchiconic acid in the presence of sulfhydryl reagents, Anal.Biochem. 170, 203-208 (1988)
- (d) Kessler R & Fanestil D, Interference by lipids in the determination of protein using bicinchiconic acid, Anal.biochem.159, 138-142 (1986)
- (e) Stich T, Determination of protein covalently bound to agarose supports using bicinchiconic acid, Anal.biochem.191. 343-346 (1990)
- (f) Brown et al, Protein measurement using bicinchiconic acid: elimination of interfering substances. Anal.biochem.180, 136-139 (1989)
- (g) **Baumann F.** et al., Lactate promotes glioma migration by TGF-beta2 dependent regulation of matrix metalloproteinase-2, Neuro Oncol (2008); **Abstract**

Other Information

Any questions regarding the use of this product should be directed to Uptima. Rev. T05E-R10E-M000-K10E-I04J-A00E

Ordering information

Catalog size quantities and prices may be found at http://www.interchim.com. Please inquire for higher quantities (availability, shipment conditions).

For any information, please ask: Uptima / Interchim; Hotline: +33 4 70 03 73 06

Disclaimer: Materials from Uptima are sold for research use only, and are not intended for food, drug, household, or cosmetic uses. Uptima is not liable for any damage resulting from handling or contact with this product.

^{*} A substance is classified as 'compatible' if its presence (at a given concentration) does not affect, or changes by less that 10%, the signal of BSA standard at 1mg/mL. Compatibility may vary depending upon the nature and concentration of the protein being assayed.